Dysfunctional and compensatory synaptic plasticity in Parkinson's disease.
نویسندگان
چکیده
In Parkinson's disease, a loss of dopamine neurons causes severe motor impairments. These motor impairments have long been thought to result exclusively from immediate effects of dopamine loss on neuronal firing in basal ganglia, causing imbalances of basal ganglia pathways. However, motor impairments and pathway imbalances may also result from dysfunctional synaptic plasticity - a novel concept of how Parkinsonian symptoms evolve. Here we built a neuro-computational model that allows us to simulate the effects of dopamine loss on synaptic plasticity in basal ganglia. Our simulations confirm that dysfunctional synaptic plasticity can indeed explain the emergence of both motor impairments and pathway imbalances in Parkinson's disease, thus corroborating the novel concept. By predicting that dysfunctional plasticity results not only in reduced activation of desired responses, but also in their active inhibition, our simulations provide novel testable predictions. When simulating dopamine replacement therapy (which is a standard treatment in clinical practice), we observe a new balance of pathway outputs, rather than a simple restoration of non-Parkinsonian states. In addition, high doses of replacement are shown to result in overshooting motor activity, in line with empirical evidence. Finally, our simulations provide an explanation for the intensely debated paradox that focused basal ganglia lesions alleviate Parkinsonian symptoms, but do not impair performance in healthy animals. Overall, our simulations suggest that the effects of dopamine loss on synaptic plasticity play an essential role in the development of Parkinsonian symptoms, thus arguing for a re-conceptualisation of Parkinsonian pathophysiology.
منابع مشابه
نقش احتمالی ساخت پذیری سیناپسی هسته پشتی حلزونی در ایجاد وزوزهای سابجکتیو
Abstaract Background and Aim: Tinnitus is a specific auditory sensitivity in which the patient hears nonexistent sounds. From neurological point of view, in majority of them increment in neural activity has been proposed characterized by increase in spontaneous firing rate in central auditory system. According to a hypothesis, tinnitus is a result of abnormal synaptic plasticity and reduced inh...
متن کاملMolecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity
This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by op...
متن کاملLavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملP 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism
Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...
متن کاملPerturbed proteostasis in autism spectrum disorders
Dynamic changes in synaptic strength rely on de novo protein synthesis and protein degradation by the ubiquitin proteasome system (UPS). Disruption of either of these cellular processes will result in significant impairments in synaptic plasticity and memory formation. Mutations in several genes encoding regulators of mRNA translation and members of the UPS have been associated with an increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2014